留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于副边LLC谐振变换器的功率处理单元建模与分析

卢泓霖,吴鑫杰,张德斌,屈诚志,张仲松,张宇

downloadPDF
卢泓霖, 吴鑫杰, 张德斌, 等. 基于副边LLC谐振变换器的功率处理单元建模与分析[J]. 强激光与粒子束. doi: 10.11884/HPLPB202436.230171
引用本文: 卢泓霖, 吴鑫杰, 张德斌, 等. 基于副边LLC谐振变换器的功率处理单元建模与分析[J]. 强激光与粒子束.doi:10.11884/HPLPB202436.230171
Lu Honglin, Wu Xinjie, Zhang Debin, et al. Modeling and analysis of power processing unit based on secondary-side LLC resonant converter[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202436.230171
Citation: Lu Honglin, Wu Xinjie, Zhang Debin, et al. Modeling and analysis of power processing unit based on secondary-side LLC resonant converter[J].High Power Laser and Particle Beams.doi:10.11884/HPLPB202436.230171

基于副边LLC谐振变换器的功率处理单元建模与分析

doi:10.11884/HPLPB202436.230171
基金项目:上海市超级博士后基金项目(2021287)
详细信息
    作者简介:

    卢泓霖,lhl998723@163.com

    通讯作者:

    张德斌,zhangdebinbin@163.com

  • 中图分类号:TN86

Modeling and analysis of power processing unit based on secondary-side LLC resonant converter

  • 摘要:随着航空航天技术的不断发展,航天器对于霍尔电推进功率处理单元(PPU)的需求不断提高,高增益、大功率以及高效的PPU成为研究的主流方向。LLC拓扑能够在全负载范围内实现软开关,因此在PPU阳极电源中具有广阔的应用前景。原边LLC因其原副边增益特性,给阳极电源高增益变换器的谐振电感设计带来极大的挑战。针对上述问题,提出了一种改进的副边LLC谐振拓扑,在保留原边LLC谐振电路软开关特性的同时,有效解决了谐振电感设计问题,使得PPU阳极电源具备高增益的性能。首先利用时域分析法建立了副边LLC拓扑数学模型,其次在模型的基础上给出其峰值增益的计算方法,最后通过一台样机验证了所建模型的正确性并验证了副边LLC电路的有效性。
  • 图 1移相全桥电路图

    Figure 1.Phase-shifted full-bridge circuit

    图 2原边LLC谐振电路

    Figure 2.Primary LLC resonant circuit

    图 3常见的整流电路拓扑

    Figure 3.Common rectifier circuit topology

    图 4副边LLC谐振电路

    Figure 4.Secondary LLC resonant circuit

    图 5副边LLC谐振电路直流增益

    Figure 5.DC gain of secondary LLC resonant circuit

    图 6状态等效电路

    Figure 6.State equivalent circuits

    图 7P模式波形

    Figure 7.P mode waveform

    图 8PO模式波形

    Figure 8.PO mode waveform

    图 9LLC谐振电感灵敏度分析

    Figure 9.Sensitivity analysis of LLC resonant inductor

    图 10不同状态下电流电压波形

    Figure 10.Current and voltage waveforms in different modes

    图 11软开关波形图

    Figure 11.Soft switching waveforms

    图 12输出电压与电流

    Figure 12.Output voltage and current

    图 13负载变化时输出动态响应

    Figure 13.Dynamic response to load change

    图 14改进后的电路效率

    Figure 14.Efficiency of improved circuit

    表 1电路部分参数

    Table 1.Main parameters of the circuit

    output power
    Po/W
    resonant frequency
    fr/kHz
    resonant inductance
    Lr/μH
    resonant capacitor
    Cr/μF
    additional inductance
    Lm/μH
    transformer
    ratio
    704 91.3 95 0.032 550 1∶8.42
    下载: 导出CSV
  • [1] 陈新华, 田希晖, 苏凌宇, 等. 航天器推进理论[M]. 北京: 国防工业出版社, 2014: 1-2

    Chen Xinhua, Tian Xihui, Su Lingyu, et al. Theory of spacecraft propulsion[M]. Beijing: National Defense Industry Press, 2014: 1-2
    [2] 李峰, 康庆, 邢杰, 等. 大功率电推进电源处理单元技术[J]. 北京航空航天大学学报, 2016, 42(8):1575-1583

    Li Feng, Kang Qing, Xing Jie, et al. Technology for power processing unit used in high power electric propulsion[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(8): 1575-1583
    [3] 张保平, 阮新波, 高波, 等. 空间电推进系统电源处理单元技术发展综述[J]. 电源学报, 2022, 20(5):42-50

    Zhang Baoping, Ruan Xinbo, Gao Bo, et al. Review of development of power processing unit technology for aerospace electric propulsion system[J]. Journal of Power Supply, 2022, 20(5): 42-50
    [4] Bozak K E, Piñero L, Scheidegger R, et al. High input voltage, silicon carbide power processing unit performance demonstration[C]//Proceedings of the 13th International Energy Conversion Engineering Conference. 2015: 3900.
    [5] Santiago W, Bozak K E, Piñero L R, et al. High input voltage, power processing unit performance demonstration[C]//Proceedings of the 52nd AIAA/SAE/ASEE Joint Propulsion Conference. 2016: 5033.
    [6] José Antonio G A. Review of ESA experimental research activities for electric propulsion[J]. Review of Esa Experimental Research Activities for Electric Propulsion, 2012.
    [7] Soendker E, Hablitzel S, Tolentino A, et al. Power processing and flow control for a 100 kW Hall thruster system[C]//Proceedings of 2018 Joint Propulsion Conference. 2018: 4419.
    [8] 王少宁, 王卫国. 适用于30 cm离子推力器的5 kW电源处理单元设计[J]. 航天器工程, 2013, 22(5):74-79

    Wang Shaoning, Wang Weiguo. Design of a 5 kW modular power processing unit for 30cm ion thruster[J]. Spacecraft Engineering, 2013, 22(5): 74-79
    [9] 马季军, 屈诚志, 吴晨昊, 等. 大功率处理单元阳极电源模块的研究[J]. 载人航天, 2019, 25(6):749-754

    Ma Jijun, Qu Chengzhi, Wu Chenhao, et al. Research on anode power supply for high power processing unit[J]. Manned Spaceflight, 2019, 25(6): 749-754
    [10] Kim E H, Kwon B H. Zero-voltage-and zero-current-switching full-bridge converter with secondary resonance[J]. IEEE Transactions on Industrial Electronics, 2010, 57(3): 1017-1025.doi:10.1109/TIE.2009.2029581
    [11] Ruan Xinbo, Yan Yangguang. A novel zero-voltage and zero-current-switching PWM full-bridge converter using two diodes in series with the lagging leg[J]. IEEE Transactions on Industrial Electronics, 2001, 48(4): 777-785.doi:10.1109/41.937410
    [12] Zhang Junming, Zhang Fan, Xie Xiaogao, et al. A novel ZVS DC/DC converter for high power applications[J]. IEEE Transactions on Power Electronics, 2004, 19(2): 420-429.doi:10.1109/TPEL.2003.823248
    [13] Wu Xinke, Zhao Chen, Zhang Junming, et al. A novel phase shift controlled ZVZCS full bridge DC-DC converter: Analysis and design considerations[C]//Proceedings of the 39th IAS Annual Meeting Conference Record of the 2004 IEEE Industry Applications Conference. 2004: 1790-1796.
    [14] 吕文琪. 两级式宽输入电压范围阳极电源研究[D]. 深圳: 哈尔滨工业大学, 2021

    Lv Wenqi. Research on two-stage anode power supply with wide input voltage range[D]. Shenzhen: Harbin Institute of Technology, 2021
    [15] 陈乃铭. 航天用宽输入宽输出电压范围的两级式直流变换器研究[D]. 南京: 南京航空航天大学, 2019: 12-69

    Chen Naiming. Research on two-stage DC/DC converter with wide input and wide output voltage range for aerospace application[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019: 12-69
    [16] 袁义生, 罗峰, 胡盼安. 一种桥型副边LLC谐振直流-直流变换器[J]. 中国电机工程学报, 2014, 34(36):6415-6425

    Yuan Yisheng, Luo Feng, Hu Pan’an. One bridge-type secondary-side LLC resonant DC-DC converter[J]. Proceedings of the CSEE, 2014, 34(36): 6415-6425
    [17] Jia Pengyu, Su Zhe, Shao Tiancong, et al. An isolated high step-up converter based on the active secondary-side quasi-resonant loops[J]. IEEE Transactions on Power Electronics, 2022, 37(1): 659-673.doi:10.1109/TPEL.2021.3098852
    [18] 刘小越, 谢运祥, 陈兵. 两种隔离式DC/DC变换器次级整流电路的比较[J]. 电气开关, 2008, 46(1):8-11

    Liu Xiaoyue, Xie Yunxiang, Chen Bing. Comparison of two isolated DC/DC conveter secondary rectifier[J]. Electric Switchgear, 2008, 46(1): 8-11
    [19] 干方宇. 高功率密度/宽输入电压范围LLC谐振变换器的研究[D]. 杭州: 浙江大学, 2022

    Gan Fangyu. Research on high power density/wide input voltage range LLC resonant converter[D]. Hangzhou: Zhejiang University, 2022
    [20] 闫振雷. LLC谐振变换器的简化时域分析及参数设计[D]. 北京: 北京交通大学, 2021

    Yan Zhenlei. Simplified time domain analysis and parameters design of LLC resonant converter[D]. Beijing: Beijing Jiaotong University, 2021
    [21] 胡海兵, 王万宝, 孙文进, 等. LLC谐振变换器效率优化设计[J]. 中国电机工程学报, 2013, 33(18):48-56

    Hu Haibing, Wang Wanbao, Sun Wenjin, et al. Optimal efficiency design of LLC resonant converters[J]. Proceedings of the CSEE, 2013, 33(18): 48-56
  • 加载中
图(14)/ 表(1)
计量
  • 文章访问数:68
  • HTML全文浏览量:27
  • PDF下载量:6
  • 被引次数:0
出版历程
  • 收稿日期:2023-06-08
  • 修回日期:2023-09-14
  • 录用日期:2023-09-15
  • 网络出版日期:2023-09-18

目录

    /

      返回文章
      返回
        Baidu
        map