留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高速SiC-MOSFET叠层封装结构设计及性能评估

马久欣,马剑豪,任吕衡,余亮,姚陈果,董守龙

downloadPDF
马久欣, 马剑豪, 任吕衡, 等. 高速SiC-MOSFET叠层封装结构设计及性能评估[J]. 强激光与粒子束. doi: 10.11884/HPLPB202335.230212
引用本文: 马久欣, 马剑豪, 任吕衡, 等. 高速SiC-MOSFET叠层封装结构设计及性能评估[J]. 强激光与粒子束.doi:10.11884/HPLPB202335.230212
Ma Jiuxin, Ma Jianhao, Ren Lüheng, et al. High speed package on package structure designed for SiC-MOSFET and its performance evaluation[J]. High Power Laser and Particle Beams. doi: 10.11884/HPLPB202335.230212
Citation: Ma Jiuxin, Ma Jianhao, Ren Lüheng, et al. High speed package on package structure designed for SiC-MOSFET and its performance evaluation[J].High Power Laser and Particle Beams.doi:10.11884/HPLPB202335.230212

高速SiC-MOSFET叠层封装结构设计及性能评估

doi:10.11884/HPLPB202335.230212
基金项目:国家自然科学基金项目(52277135);国防科技大学脉冲功率激光技术国家重点实验室开放基金项目(SKL2020KF02);重庆市研究生科研创新项目(CYB23027)
详细信息
    作者简介:

    马久欣,15542817645@163.com

    通讯作者:

    余 亮,yu_liang@cqu.edu.cn

  • 中图分类号:TN78

High speed package on package structure designed for SiC-MOSFET and its performance evaluation

  • 摘要:作为脉冲系统的核心部件,开关承担着脉冲成形、功率调制等重要作用,开关通断速度往往决定脉冲上升时间,高速开关是纳秒短脉冲形成的关键。提出一种高速SiC-MOSFET叠层封装结构,整体布局无引线、无外接,具有极低寄生电感。开展了电磁场仿真研究,揭示了脉冲形成过程中封装多介质界面电磁场分布规律,明确了封装结构电磁薄弱环节,为进一步绝缘优化提供指导。搭建双脉冲测试平台,对研制的SiC-MOSFET叠层封装开关与同芯片商用TO-263-7封装开关的动态性能进行测试。结果表明,大电流工况下,所提封装电流开通速度提升48%,关断速度提升50%,开通损耗降低54.6%,关断损耗降低62.8%,实验结果验证了所提叠层封装结构对开关动态性能的改善。
  • 图 1极低寄生电感叠层结构内部示意图

    Figure 1.Schematic diagram of the interior of package on package (PoP)

    图 2叠层封装模块整体概图

    Figure 2.Overall overview of the PoP

    图 3脉冲形成过程的叠层封装磁场空间变化

    Figure 3.Spatial variation of magnetic field of laminated package during pulse formation

    图 4脉冲平顶阶段叠层封装的磁密矢量分布

    Figure 4.Magnetic density vector distribution of the PoP in pulse flat top stage

    图 5脉冲平顶阶段叠层封装的电流密度分布

    Figure 5.Current density distribution of the PoP in pulse flat top stage

    图 6开关特性测试电路原理图

    Figure 6.Schematic diagram of switching characteristic test circuit

    图 7开关特性测试电路

    Figure 7.Switch characteristic test experimental circuit

    图 8额定电流36A时TO-263与PoP封装双脉冲测试对比波形

    Figure 8.Comparison of TO-263 and PoP package double pulse test waveforms at rated current 36A

    图 9极限脉冲电流90 A时TO-263与PoP封装双脉冲测试对比波形

    Figure 9.Comparison of TO-263 and PoP double pulse test when the pulse current is 90 A

    表 1特性评估实验参数

    Table 1.Characteristic evaluation experimental parameters

    Csave/μF Lsave/μH Ug.sta-off/V Rg.current/mΩ Ug.on/V Ug.off/V Rdamp chip of PoP
    5 75 −9 20 15 −9 5 CPM3-0065-1000B
    下载: 导出CSV

    表 2额定电流36 A时TO-263与PoP封装的参数对比

    Table 2.Comparison of TO-263 and PoP package parameters at a rated current of 36 A

    package Uds(turn-on)/ns Uds(turn-off)/ns id(turn-on)/ns id(turn-off)/ns Ploss(turn-on)/μJ Ploss(turn-off)/μJ Uds/V
    TO-263 4.3 2.7 6.1 23.8 80.9 320.1 954
    PoP 4.0 2.6 4.1 6.8 69.9 212.3 955
    下载: 导出CSV

    表 3极限脉冲电流90 A时TO-263与PoP封装的参数对比

    Table 3.Comparison of TO-263 and PoP package parameters when the limit pulse current is 90 A

    package Uds(turn-on)/ns Uds(turn-off)/ns id(turn-on)/ns id(turn-off)/ns Ploss(turn-on)/μJ Ploss(turn-off)/μJ Uds/V
    TO-263 3.8 2.2 22.9 15.8 285.8 1168.4 739
    PoP 3.4 2.1 11.9 7.9 129.5 433.8 735
    下载: 导出CSV
  • [1] 丛培天. 中国脉冲功率科技进展简述[J]. 强激光与粒子束, 2020, 32:025002

    Cong Peitian. Review of Chinese pulsed power science and technology[J]. High Power Laser and Particle Beams, 2020, 32: 025002
    [2] 李永龙, 袁雪林, 刘九龙, 等. 基于低轨卫星的分布式超宽带电磁脉冲对地面接收机干扰技术[J]. 强激光与粒子束, 2023, 35:033006doi:10.11884/HPLPB202335.220225

    Li Yonglong, Yuan Xuelin, Liu Jiulong, et al. Jamming technology of distributed ultra-wideband electromagnetic pulse to ground receivers based on low-orbit satellites[J]. High Power Laser and Particle Beams, 2023, 35: 033006doi:10.11884/HPLPB202335.220225
    [3] 江伟华. 高重复频率脉冲功率技术及其应用: (6)代表性的应用[J]. 强激光与粒子束, 2014, 26:030201doi:10.3788/HPLPB20142603.30201

    Jiang Weihua. Repetition rate pulsed powertechnology and its applications: (VI) typical applications[J]. High Power Laser and Particle Beams, 2014, 26: 030201doi:10.3788/HPLPB20142603.30201
    [4] Jiang Weihua, Yatsui K, Takayama K, et al. Compact solid-State switched pulsed power and its applications[J]. Proceedings of the IEEE, 2004, 92(7): 1180-1196.doi:10.1109/JPROC.2004.829003
    [5] 刘红梅, 董守龙, 宁郡怡, 等. 纳秒脉冲高频透膜效应优先杀伤化疗抗性肿瘤细胞的仿真与实验研究[J]. 电工技术学报, 2019, 34(22):4839-4848doi:10.19595/j.cnki.1000-6753.tces.181456

    Liu Hongmei, Dong Shoulong, NingJunyi, et al. Simulation and experimental study on preferential killing of chemoresistance tumor cells induced by the high-frequency permeation effect of nanosecond pulse field[J]. Transactions of China Electrotechnical Society, 2019, 34(22): 4839-4848doi:10.19595/j.cnki.1000-6753.tces.181456
    [6] 陈杰, 梁华, 魏彪, 等. 参数化纳秒脉冲电源激励下表面介质阻挡放电特性[J]. 高电压技术, 2019, 45(10):3365-3374doi:10.13336/j.1003-6520.hve.20181121002

    Chen Jie, Liang Hua, Wei Biao, et al. Discharge characteristics of surface dielectric barrier discharge driven by parameterized nanosecond pulsed power supply[J]. High Voltage Engineering, 2019, 45(10): 3365-3374doi:10.13336/j.1003-6520.hve.20181121002
    [7] 江进波, 陈锐, 赵青, 等. 脉冲变压器驱动SiC MOSFET型Marx同步特性[J]. 强激光与粒子束, 2023, 35:085002doi:10.11884/HPLPB202335.230108

    Jiang Jinbo, Chen Rui, Zhao Qing, et al. Synchronous characteristics of SiC MOSFET driven by pulse transformer for Marx generator[J]. High Power Laser and Particle Beams, 2023, 35: 085002doi:10.11884/HPLPB202335.230108
    [8] RaoJunfeng, Liu Kefu, QiuJian. All solid-state nanosecond pulsed generators based on Marx and magnetic switches[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2013, 20(4): 1123-1128.doi:10.1109/TDEI.2013.6571426
    [9] Grekhov I V. Pulse power generation in Nano- and subnanosecond range by means of ionizing fronts in semiconductors: the state of the art and future prospects[J]. IEEE Transactions on Plasma Science, 2010, 38(5): 1118-1123.doi:10.1109/TPS.2010.2043857
    [10] Sugai T, Jiang Weihua, Tokuchi A. Influence of forward pumping current on current interruption by semiconductor opening switch[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22(4): 1971-1975.doi:10.1109/TDEI.2015.004989
    [11] Yu Liang, Liao Yixin, RenLvheng, et al. High repetition frequency subnanosecond avalanche marxgenerator[J]. IEEE Transactions on Plasma Science, 2023, 51(6): 1477-1484.doi:10.1109/TPS.2023.3270355
    [12] 梁琳, 颜小雪, 黄鑫远, 等. 半导体脉冲功率开关器件综述[J]. 中国电机工程学报, 2022, 42(23):8631-8651doi:10.13334/j.0258-8013.pcsee.212101

    Liang Lin, Yan Xiaoxue, Huang Xinyuan, et al. Review on semiconductor pulsed power switching devices[J]. Proceedings of the CSEE, 2022, 42(23): 8631-8651doi:10.13334/j.0258-8013.pcsee.212101
    [13] 秦海鸿, 谢斯璇, 卜飞飞, 等. SiC MOSFET栅源电压评估及驱动回路参数优化设计方法[J]. 中国电机工程学报, 2022, 42(18):6823-6834

    Qin Haihong, XieSixuan, Bu Feifei, et al. Gate-source voltage evaluation and parameter optimized designed method of driving circuit for SiCMOSFET[J]. Proceedings of the CSEE, 2022, 42(18): 6823-6834
    [14] Ma Jiuxin, Yu Liang, RenLvheng, et al. Ultrafast gate driver with GaN HEMTs for ns-pulse generator using SiC MOSFET[J]. IEEE Transactions on Plasma Science, 2023: 1-10.
    [15] 梁美, 郑琼林, 可翀, 等. SiC MOSFET、Si CoolMOS和IGBT的特性对比及其在DAB变换器中的应用[J]. 电工技术学报, 2015, 30(12):41-50doi:10.3969/j.issn.1000-6753.2015.12.006

    Liang Mei, ZhengQionglin, Ke Chong, et al. Performance comparison of SiC MOSFET, Si CoolMOS and IGBT for DAB converter[J]. Transactions of China Electrotechnical Society, 2015, 30(12): 41-50doi:10.3969/j.issn.1000-6753.2015.12.006
  • 加载中
计量
  • 文章访问数:48
  • HTML全文浏览量:14
  • PDF下载量:3
  • 被引次数:0
出版历程
  • 收稿日期:2023-07-09
  • 修回日期:2023-10-25
  • 录用日期:2023-10-23
  • 网络出版日期:2023-10-30

目录

    /

      返回文章
      返回
        Baidu
        map