留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大功率780 nm单管连续输出16 W和巴条连续输出180 W半导体激光器

李弋,王浩淼,张亮,贺钰雯,周坤,杜维川,何林安,胡耀,武德勇,高松信,唐淳

downloadPDF
李弋, 王浩淼, 张亮, 等. 大功率780 nm单管连续输出16 W和巴条连续输出180 W半导体激光器[J]. 强激光与粒子束, 2023, 35: 111002. doi: 10.11884/HPLPB202335.230073
引用本文: 李弋, 王浩淼, 张亮, 等. 大功率780 nm单管连续输出16 W和巴条连续输出180 W半导体激光器[J]. 强激光与粒子束, 2023, 35: 111002.doi:10.11884/HPLPB202335.230073
Li Yi, Wang Haomiao, Zhang Liang, et al. High power semiconductor lasers with output power over 16 W for single emitter and 180 W for bar operation at 780 nm under CW operation[J]. High Power Laser and Particle Beams, 2023, 35: 111002. doi: 10.11884/HPLPB202335.230073
Citation: Li Yi, Wang Haomiao, Zhang Liang, et al. High power semiconductor lasers with output power over 16 W for single emitter and 180 W for bar operation at 780 nm under CW operation[J].High Power Laser and Particle Beams, 2023, 35: 111002.doi:10.11884/HPLPB202335.230073

大功率780 nm单管连续输出16 W和巴条连续输出180 W半导体激光器

doi:10.11884/HPLPB202335.230073
详细信息
    作者简介:

    李 弋,njuliyi@aliyun.com

    通讯作者:

    贺钰雯,18380597763@163.com

  • 中图分类号:TN248.4

High power semiconductor lasers with output power over 16 W for single emitter and 180 W for bar operation at 780 nm under CW operation

  • 摘要:设计并制备了780 nm大功率半导体激光器的单管和巴条。采用金属有机化学气相沉积技术制备的外延结构,分别使用GaAsP和GaInP作为量子阱和波导层,限制层是具有高带隙的AlGaInP材料。量子阱与波导层带隙0.15 eV,波导层与限制层带隙0.28 eV,抑制了载流子泄露。1.55 μm厚非对称大光学腔波导结构抑制快轴高阶模,同时缓解腔面损伤问题。为进一步提高腔面损伤阈值,利用超高真空解理和钝化技术,在腔面上沉积了非晶ZnSe钝化层。条宽150 μm、腔长4 mm的单管器件,在电流为15 A时,输出连续功率16.3 W未出现COD现象,斜率效率达到1.27 W/A,电光转换效率为58%,慢轴发散角9.9°,光谱半高宽为1.81 nm。填充因子为40%的厘米巴条,在192 A下实现连续输出功率180 W,电光转换效率为50.7%,光谱宽度仅为2.2 nm。
  • 图 1780 nm半导体激光外延的能带结构

    Figure 1.Energy bands diagram of 780 nm diode laser

    图 2780 nm半导体激光外延的折射率及光场分布

    Figure 2.Refractive index and mode distribution diagram of 780 nm diode laser

    图 3巴条上发光点间深隔离槽SEM照片

    Figure 3.SEM photo of deep isolation groove between emitters on bar

    图 4780 nm单管的功率电压效率曲线

    Figure 4.Optical output power, voltage, and conversion efficiency as function of current of 780 nm single emitter

    图 5780 nm单管的远场曲线

    Figure 5.Far field of 780 nm single emitter

    图 6780 nm激光单管的光谱曲线

    Figure 6.Spectrum curve of 780 nm single emitter

    图 7780 nm激光巴条的功率电压效率曲线

    Figure 7.Optical output power, voltage, and conversion efficiency as function of current of 780 nm diode laser bar

    图 8780 nm激光巴条的光谱曲线

    Figure 8.Spectrum curve of 780 nm diode laser bar

    表 17xx nm激光单管性能对比

    Table 1.Performance comparison of 7xx nm diode laser single emitters

    diode laser single
    emitter
    wavelength/nm emitter
    width/μm
    power/W conversion
    efficiency/%
    fast axis
    divergence/(°)
    slow axis
    divergence/(°)
    spectral
    width/nm
    nLight[10] 786 200 10 64 50 (FW1/e2) 10 (FW1/e2) 1.7
    Coherent[11] 793 100 5.6 60.3 / 8.8 (FW95%) /
    Ferdinand-Braun-Institut[5] 780 90 14 (pulse) 45 / / /
    Ferdinand-Braun-Institut[5] 780 1200 60 (pulse) 50 / 13 (FW95%) /
    Raybow Optoelectronics[12] 755 350 12.7 54 37 (FWHM) 8 (FWHM) /
    Institute of Applied Electronics, CAEP[13] 780 100 10.1 54 46 (FW95%) 7 (FW95%) 2.6
    Everbright Photonics[14] 780 150 7 71 39.9 (FWHM) / /
    16.3 60
    this work 780 150 16.3 58 45 (FW95%) 9.9 (FW95%) 1.81
    下载: 导出CSV

    表 27xx nm激光巴条性能对比

    Table 2.Performance comparison of 7xx nm diode laser bars

    diode laser bar wavelength/nm emitter number emitter width/μm power/W conversion efficiency/% spectral width/nm
    DILAS[3] 780 19 150 110 57 2.2
    Ferdinand-Braun-Institut[15] 780 5 / 172 (pulse) 57 /
    this work 780 19 200 180 50.7 2.2
    下载: 导出CSV
  • [1] Keaveney J, Hamlyn W J, Adams C S, et al. A single-mode external cavity diode laser using an intra-cavity atomic Faraday filter with short-term linewidth <400 kHz and long-term stability of <1 MHz[J]. Review of Scientific Instruments, 2016, 87: 095111.doi:10.1063/1.4963230
    [2] Moulton P F, Rines G A, Slobodtchikov E V, et al. Tm-doped fiber lasers: fundamentals and power scaling[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(1): 85-92.doi:10.1109/JSTQE.2008.2010719
    [3] Kissel H, Köhler B, Biesenbach J. High-power diode laser pumps for alkali lasers (DPALs)[C]//Proceedings of the SPIE 8241, High-Power Diode Laser Technology and Applications X. 2012: 82410Q.
    [4] Hübner M, Wilkens M, Eppich B, et al. A 1.4kW 780nm pulsed diode laser, high duty cycle, passively side-cooled pump module[J]. Optics Express, 2021, 29(7): 9749-9757.doi:10.1364/OE.416527
    [5] Crump P, Wilkens M, Hübner M, et al. Efficient, high power 780 nm pumps for high energy class mid-infrared solid state lasers[C]//Proceedings of the SPIE 11262, High-Power Diode Laser Technology XVIII. 2020: 1126204.
    [6] Kissel H, Tomm J W, Köhler B, et al. Impact of external optical feedback on high-power diode laser lifetime and failure modes[C]//Proceedings of the SPIE 10900, High-Power Diode Laser Technology XVII. 2019: 109000S.
    [7] Christopher H, Kovalchuk E V, Wenzel H, et al. Comparison of symmetric and asymmetric double quantum well extended-cavity diode lasers for broadband passive mode-locking at 780nm[J]. Applied Optics, 2017, 56(19): 5566-5572.doi:10.1364/AO.56.005566
    [8] Al-Jabr A A, Majid M A, Alias M S, et al. Large bandgap blueshifts in the InGaP/InAlGaP laser structure using novel strain-induced quantum well intermixing[J]. Journal of Applied Physics, 2016, 119: 135703.doi:10.1063/1.4945104
    [9] Michaud J, Vecchio P D, BéchouL, et al. Precise facet temperature distribution of high-power laser diodes: unpumped window effect[J]. IEEE Photonics Technology Letters, 2015, 27(9): 1002-1005.doi:10.1109/LPT.2015.2405090
    [10] Bao L, Wang J, Devito M, et al. Performance and reliability of high power 7xx nm laser diodes[C]//Proceedings of the SPIE 7953, Novel In-Plane Semiconductor Lasers X. 2011: 79531B.
    [11] Liu G L, Lehkonen S, Li J W, et al. High power and reliable 793nm T-bar and single emitter for thulium-doped fiber laser pumping[C]//Proceedings of the SPIE 11262, High-Power Diode Laser Technology XVIII. 2020: 1126208.
    [12] Hu H M, Zhao Jianyang, Wang Weimin, et al. 12 W high power InGaAsP/AlGaInP 755 nm quantum well laser[J]. Chinese Optics Letters, 2019, 17: 061403.doi:10.3788/COL201917.061403
    [13] 何林安, 周坤, 张亮, 等. 大功率780 nm半导体激光器的设计与制备[J]. 强激光与粒子束, 2021, 33:091001doi:10.11884/HPLPB202133.210099

    He Lin'an, ZhouKun, ZhangLiang, et al. Fabrication of high-power semiconductor laser with wavelength-locked at 780 nm[J]. High Power Laser and Particle Beams, 2021, 33: 091001doi:10.11884/HPLPB202133.210099
    [14] Wang Bangguo, Zhou Li, Tan Shaoyang, et al. 71% wall-plug efficiency from 780 nm-emitting laser diode with GaAsP quantum well[J]. Optics & Laser Technology, 2024, 168: 109867.
    [15] Arslan S, MaaßdorfA, Martin D, et al. Progress in high power diode laser pumps for high-energy class mid infra-red lasers[C]//2021 IEEE Photonics Conference (IPC). 2021: 1-2.
    [16] Boschker J E, Spengler U, Ressel P, et al. Stability of ZnSe-passivated laser facets cleaved in air and in ultra-high vacuum[J]. IEEE Photonics Journal, 2022, 14: 1531606.
  • 加载中
图(8)/ 表(2)
计量
  • 文章访问数:168
  • HTML全文浏览量:43
  • PDF下载量:64
  • 被引次数:0
出版历程
  • 收稿日期:2023-04-02
  • 修回日期:2023-10-15
  • 录用日期:2023-10-15
  • 网络出版日期:2023-10-18
  • 刊出日期:2023-11-11

目录

    /

      返回文章
      返回
        Baidu
        map